Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Upper limits on terahertz difference frequency generation power in quantum well heterostructures

Identifieur interne : 002171 ( Main/Repository ); précédent : 002170; suivant : 002172

Upper limits on terahertz difference frequency generation power in quantum well heterostructures

Auteurs : RBID : Pascal:11-0263510

Descripteurs français

English descriptors

Abstract

There is currently considerable interest in terahertz (THz) difference frequency generation (DFG) utilizing near-resonant intersubband nonlinearity in quantum cascade lasers and other quantum well heterostructures. Such devices were shown to operate at room temperature, but their power demonstrated so far has been rather low. In all previous works the intracavity configuration was studied, in which the nonlinear mixing region was placed inside a pump laser cavity. Here we obtain the upper limits on the THz DFG power that can be achieved in intersubband quantum well systems under external optical pumping. We consider strong optical fields and include all resonant absorption or pump depletion, and nonlinear saturation effects by self-consistently solving three coupled wave equations, the Poisson equation, and density matrix equations. Although we use a GaInAs/AlInAs double quantum well heterostructure as an example, our analysis is applicable to any material system possessing resonant second-order optical nonlinearity. The maximal THz DFG power is reached for intermediate pump intensities of the order of the saturation intensity. Further increase of the pump intensity results in the decrease of the maximum THz DFG power. We analyze the dependence of THz power on the length and doping of the nonlinear mixing region, and present the design of the optimal structures.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0263510

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Upper limits on terahertz difference frequency generation power in quantum well heterostructures</title>
<author>
<name sortKey="Cho, Yong Hee" uniqKey="Cho Y">Yong-Hee Cho</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, Texas A&M University</s1>
<s2>College Station, Texas 77843</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>College Station, Texas 77843</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Belkin, Mikhail A" uniqKey="Belkin M">Mikhail A. Belkin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Texas at Austin</s1>
<s2>Austin, Texas 78758</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Belyanin, Alexey" uniqKey="Belyanin A">Alexey Belyanin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, Texas A&M University</s1>
<s2>College Station, Texas 77843</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>College Station, Texas 77843</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0263510</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0263510 INIST</idno>
<idno type="RBID">Pascal:11-0263510</idno>
<idno type="wicri:Area/Main/Corpus">003031</idno>
<idno type="wicri:Area/Main/Repository">002171</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Coupled wave theory</term>
<term>Density matrix</term>
<term>Difference frequency</term>
<term>Gallium Arsenides</term>
<term>Heterostructures</term>
<term>High field</term>
<term>Indium Arsenides</term>
<term>Intracavity</term>
<term>Multiple quantum well</term>
<term>Nonlinear optics</term>
<term>Optical pumping</term>
<term>Optical saturation</term>
<term>Poisson equation</term>
<term>Quantum cascade laser</term>
<term>Quantum system</term>
<term>Quantum wells</term>
<term>Semiconductor lasers</term>
<term>THz range</term>
<term>Ternary compounds</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Pompage optique</term>
<term>Champ intense</term>
<term>Saturation optique</term>
<term>Laser cascade quantique</term>
<term>Intracavité</term>
<term>Laser semiconducteur</term>
<term>Optique non linéaire</term>
<term>Etude théorique</term>
<term>Théorie onde couplée</term>
<term>Matrice densité</term>
<term>Domaine fréquence THz</term>
<term>Fréquence différence</term>
<term>Température ambiante</term>
<term>Puits quantique</term>
<term>Hétérostructure</term>
<term>Puits quantique multiple</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Système quantique</term>
<term>Equation Poisson</term>
<term>GaInAs</term>
<term>As Ga In</term>
<term>InGaAs</term>
<term>AlInAs</term>
<term>Non linéarité ordre 2</term>
<term>0130C</term>
<term>4255P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There is currently considerable interest in terahertz (THz) difference frequency generation (DFG) utilizing near-resonant intersubband nonlinearity in quantum cascade lasers and other quantum well heterostructures. Such devices were shown to operate at room temperature, but their power demonstrated so far has been rather low. In all previous works the intracavity configuration was studied, in which the nonlinear mixing region was placed inside a pump laser cavity. Here we obtain the upper limits on the THz DFG power that can be achieved in intersubband quantum well systems under external optical pumping. We consider strong optical fields and include all resonant absorption or pump depletion, and nonlinear saturation effects by self-consistently solving three coupled wave equations, the Poisson equation, and density matrix equations. Although we use a GaInAs/AlInAs double quantum well heterostructure as an example, our analysis is applicable to any material system possessing resonant second-order optical nonlinearity. The maximal THz DFG power is reached for intermediate pump intensities of the order of the saturation intensity. Further increase of the pump intensity results in the decrease of the maximum THz DFG power. We analyze the dependence of THz power on the length and doping of the nonlinear mixing region, and present the design of the optimal structures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7953</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Upper limits on terahertz difference frequency generation power in quantum well heterostructures</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers X : 25-28 January 2011, San Francisco CA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>CHO (Yong-Hee)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BELKIN (Mikhail A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BELYANIN (Alexey)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BELYANIN (Alexey A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SMOWTON (Peter M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, Texas A&M University</s1>
<s2>College Station, Texas 77843</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Electrical and Computer Engineering, University of Texas at Austin</s1>
<s2>Austin, Texas 78758</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>79530U.1-79530U.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8490-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174736470220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>18 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0263510</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>There is currently considerable interest in terahertz (THz) difference frequency generation (DFG) utilizing near-resonant intersubband nonlinearity in quantum cascade lasers and other quantum well heterostructures. Such devices were shown to operate at room temperature, but their power demonstrated so far has been rather low. In all previous works the intracavity configuration was studied, in which the nonlinear mixing region was placed inside a pump laser cavity. Here we obtain the upper limits on the THz DFG power that can be achieved in intersubband quantum well systems under external optical pumping. We consider strong optical fields and include all resonant absorption or pump depletion, and nonlinear saturation effects by self-consistently solving three coupled wave equations, the Poisson equation, and density matrix equations. Although we use a GaInAs/AlInAs double quantum well heterostructure as an example, our analysis is applicable to any material system possessing resonant second-order optical nonlinearity. The maximal THz DFG power is reached for intermediate pump intensities of the order of the saturation intensity. Further increase of the pump intensity results in the decrease of the maximum THz DFG power. We analyze the dependence of THz power on the length and doping of the nonlinear mixing region, and present the design of the optimal structures.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Pompage optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical pumping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Champ intense</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>High field</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Saturation optique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optical saturation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Intracavité</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Intracavity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cavidad interna</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Optique non linéaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nonlinear optics</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>21</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Théorie onde couplée</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Coupled wave theory</s0>
<s5>23</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Teoría onda acoplada</s0>
<s5>23</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matrice densité</s0>
<s5>24</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Density matrix</s0>
<s5>24</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Domaine fréquence THz</s0>
<s5>37</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>THz range</s0>
<s5>37</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fréquence différence</s0>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Difference frequency</s0>
<s5>38</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Frecuencia diferencia</s0>
<s5>38</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>41</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>47</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>48</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>48</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>49</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>49</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>49</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Système quantique</s0>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Quantum system</s0>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Sistema cuántico</s0>
<s5>61</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Equation Poisson</s0>
<s5>62</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Poisson equation</s0>
<s5>62</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>GaInAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>AlInAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Non linéarité ordre 2</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>178</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers</s1>
<s2>10</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002171 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002171 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0263510
   |texte=   Upper limits on terahertz difference frequency generation power in quantum well heterostructures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024